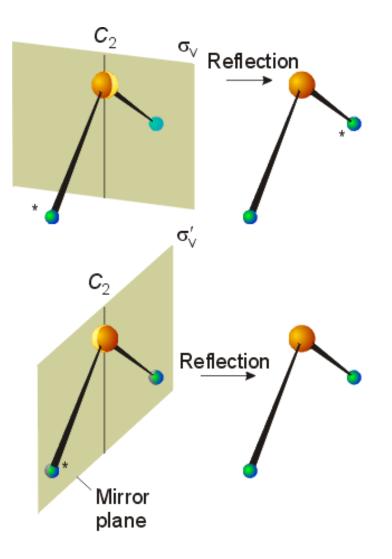
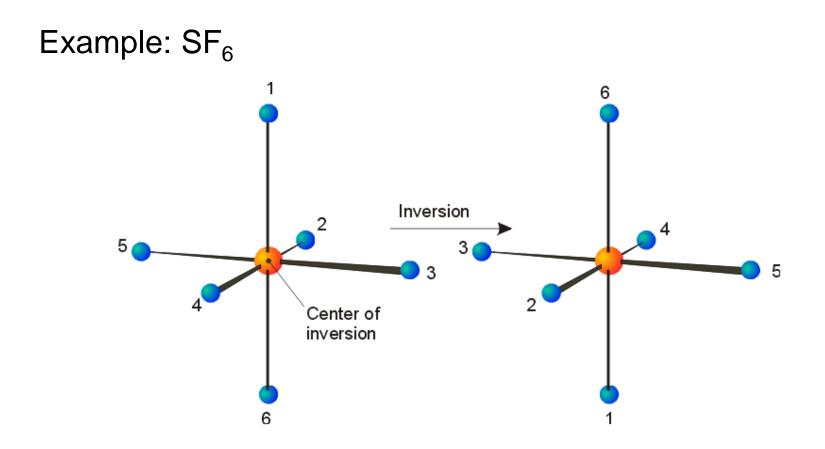

Chemistry 3830

Symmetry

Symmetry Elements and Operations

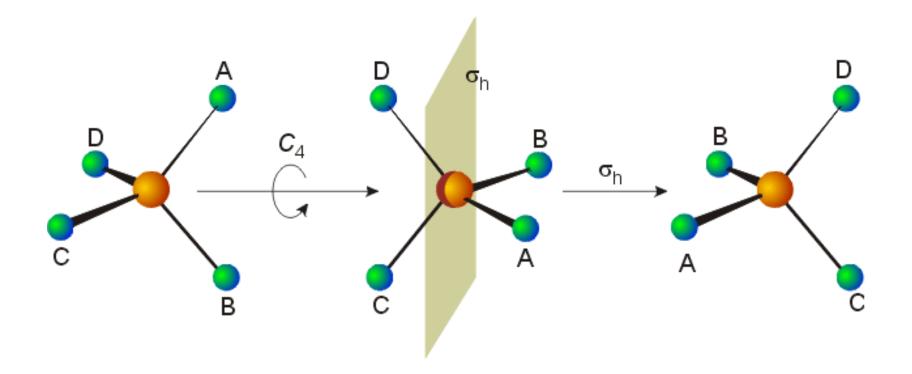

Symmetry Operation	Symmetry Element	Symbol
Identity		Е
Proper rotation	Rotation axis	C _n
Reflection	Mirror plan	σ
Inversion	Inversion centre/ centre of symmetry	i
Improper rotation	Improper rotation axis	S _n

Schoenflies notation

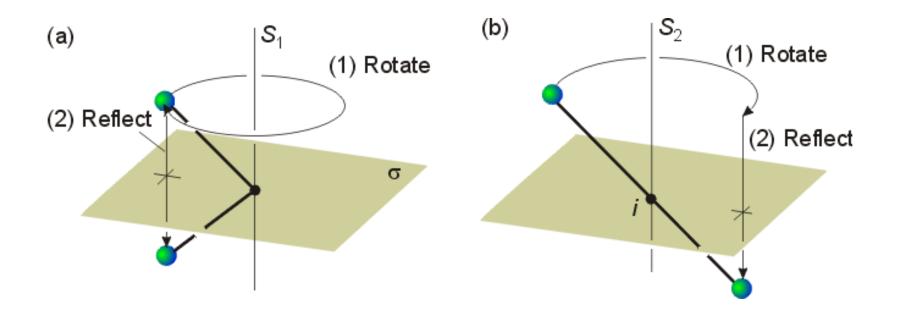


Reflection, σ

Example: H₂O

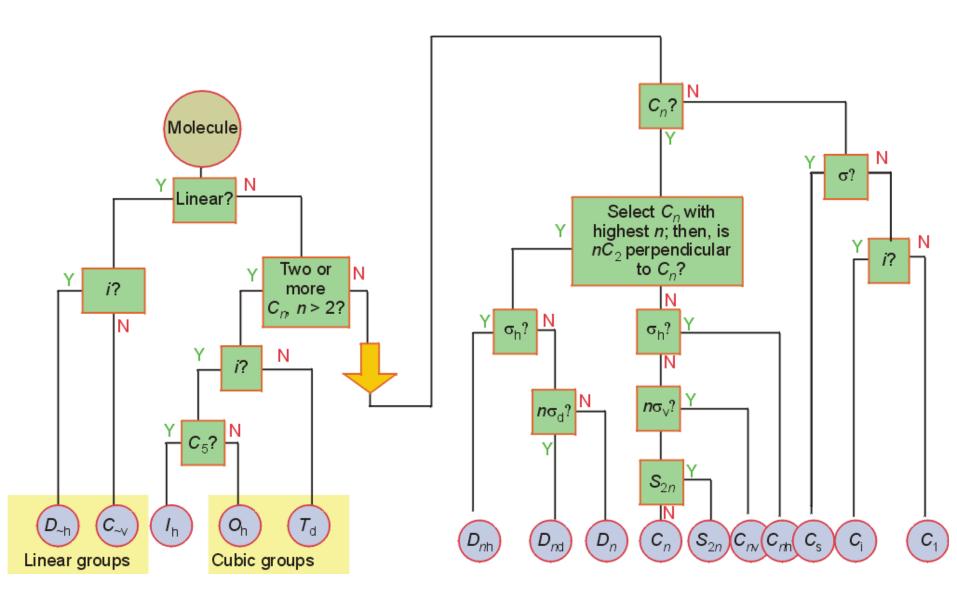


Inversion Centre



Improper Rotation (Axis), S_n

Example: CH₄

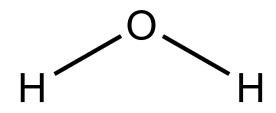


Improper Rotation (Axis), S_n

You will not find S₁ or S₂ axes.

Point Groups

Point Groups

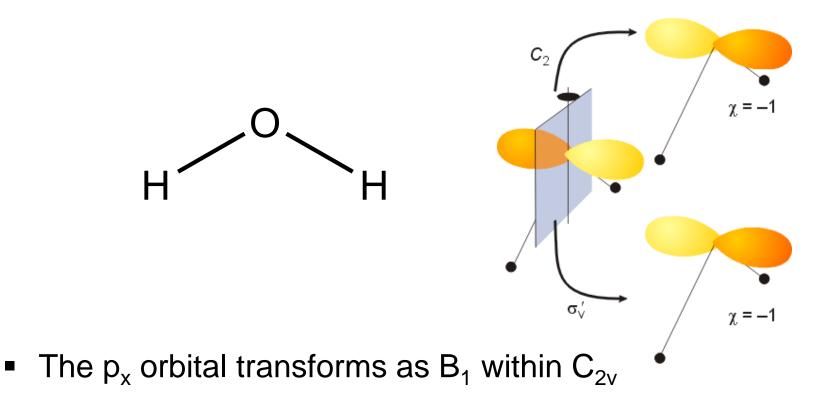

Polar point groups:

must not belong to a D group of any kind, nor T_d, O_h or I_h

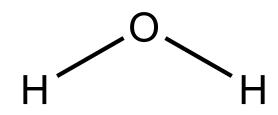
Chiral point groups:

must not possess an S_n axis

(therefore, no mirror planes, nor an inversion centre, which are equivalent to S_1 and S_2 , respectively).


C_{2v}	Е	C_2	$\sigma_{v}(xz)$	$\sigma_v(yz)$		
A ₁	1	1	1	1	Z	x^2, y^2, z^2
A_2	1	1	-1	-1	Rz	ху
\mathbf{B}_1	1	-1	1	-1	x, R _y	XZ
B ₂	1	-1	-1	1	y, R _x	yz

Symmetry operations


Symmetry species = Mulliken labels

Characters = χ

C_{2v}	Е	C_2	$\sigma_{v}(xz)$	$\sigma_v(yz)$		
A_1	1	1	1	1	Ζ	x^2, y^2, z^2
A_2	1	1	-1	-1	R _z	ху
\mathbf{B}_1	1	-1	1	-1	x, R _y	XZ
B_2	1	-1	-1	1	y, R _x	yz

C_{2v}	Е	C_2	$\sigma_{\rm v}({\rm xz})$	$\sigma_v(yz)$		
A_1	1	1	1	1	Z	x^2, y^2, z^2
A_2	1	1	-1	-1	Rz	ху
B_1	1	-1	1	-1	x, R _v	XZ
\mathbf{B}_2	1	-1	-1	1	y, R _x	yz

The cubic groups (continued)

0 _h (m3m)	E	8C ₃	6C2	6C4	$3C_2 = (= C_4^2)$	i	6S ₄	8.S ₆	$3\sigma_h$	6σ _d	h =	= 48
A _{1g}	1	1	1	1	1	1	1	1	1	1		$x^2 + y^2 + z^2$
A _{2g}	1	1	-1	-1	1	1	-1	1	1	-1		
E _g	2	-1	0	0	2	2	0	-1	2	0		$(2z^2 - x^2 - y^2)$ $x^2 - y^2)$
T _{1g}	3	0	-1	1	-1	3	1	0	-1	-1	$(R_x, R_y R_z)$	
T _{2g}	3	0	1	-1	-1	3	-1	0	-1	1		(xy, yz, zx)
A _{1u}	1	1	1	1	1	-1	-1	-1	-1	-1		
A _{2u}	1	1	-1	-1	1	-1	1	-1	-1	1		
E _u	2	-1	0	0	2	-2	0	1	-2	0		
T _{lu}	3	0	-1	1	-1	-3	-1	0	1	1	(x, y, z)	
T _{2u}	3	0	1	-1	-1	-3	1	0	1	-1		

The cubic groups (continued)

0 _h (<i>m</i> 3 <i>m</i>)	E	8 C ₃	6C2	6C ₄	$3C_2$ (= C_4^2)	i	6S ₄	8S6	3σ _h	6σ _d	h =	= 48
A _{1g}	1	1	1	1	1	1	1	1	1	1		$x^2 + y^2 + z^2$
A _{2g}	1	1	-1	-1	1	1	-1	1	1	-1		
$\mathbf{E}_{\mathbf{g}}$	2	-1	0	0	2	2	0	-1	2	0		$\begin{array}{l} (2z^2 - x^2 - y^2, \\ x^2 - y^2) \end{array}$
T _{1g}	3	0	-1	1	-1	3	1	0	-1	-1	$(R_x, R_y R_z)$	
T _{2g}	3	0	1	1	-1	3	-1	0	-1	1		(xy, yz, zx)
A _{1u}	1	1	1	1	1	-1	-1	-1	-1	-1		
A _{2u}	1	1	-1	-1	1	-1	1	-1	-1	1		
Eu	2	-1	0	0	2	-2	0	1	-2	0		
T _{1u}	3	0	-1	1	-1	-3	-1	0	1	1	(x, y, z)	
T _{2a}	3	0	1	-1	-1	-3	1	0	1	-1		

Mulliken labels:

A, B = non-degenerateE = doubly degenerateT (or F) = triply degenerate

g = gerade = symmetric with respect to i. u = ungerade = antisymmetric with respect to i.